摘 要: | 针对当前基于图神经网络的推荐系统受数据稀疏影响推荐效率不高的问题,提出融合画像和文本信息的轻量级关系图注意推荐模型(LightRGAN)。首先,利用用户画像和项目画像初始化用户和项目的嵌入表示。其次,引入评论、项目描述和项目类型作为辅助信息,并通过基于多头注意力机制的文本嵌入网络挖掘同一用户评论集和描述集中文本之间的潜在联系。然后,通过融合注意力机制的轻量级关系图卷积网络学习用户和项目的嵌入表示。最后,对各层嵌入表示加权求和并通过预测网络计算匹配分数。在三个公开数据集上的实验结果表明LightRGAN的效果优于多个现有的基线模型,评估指标HR@20、NDCG@20较最优基线模型最少提升了2.58%、2.37%。
|