基于加权分类损失和核范数的领域自适应模型 |
| |
作者姓名: | 杜社林 黄炳赫 李荣鹏 宋学力 肖玉柱 |
| |
作者单位: | 长安大学理学院,长安大学理学院,长安大学理学院,长安大学理学院,长安大学理学院 |
| |
基金项目: | 长安大学中央高校基本科研业务费专项资金资助项目(310812163504) |
| |
摘 要: | 领域自适应将源域上学习到的知识迁移到目标域上,使得在带标签数据少的情况下也可以有效地训练模型。采用伪标签的领域自适应模型未考虑错误伪标签的影响,并且在决策边界处样本的分类准确率较低,针对上述问题提出了基于加权分类损失和核范数的领域自适应模型。该模型使用带有伪标签的可信样本特征与带有真实标签的源域样本特征构建辅助域,在辅助域上设计加权分类损失函数,降低错误伪标签在训练过程中产生的影响;加入批量核范数最大化损失,提高决策边界处样本的分类准确率。在Office31、Office-Home、Image-CLEFDA基准数据集上与之前模型的对比实验表明,该模型有更高的精确度。
|
关 键 词: | 领域自适应 加权分类损失 核范数 伪标签 |
收稿时间: | 2022-10-26 |
修稿时间: | 2023-05-18 |
|
| 点击此处可从《计算机应用研究》浏览原始摘要信息 |
|
点击此处可从《计算机应用研究》下载全文 |
|