首页 | 本学科首页   官方微博 | 高级检索  
     

基于时空约束密度聚类的职住地识别方法
引用本文:苗登逢,肖跃雷. 基于时空约束密度聚类的职住地识别方法[J]. 计算机应用研究, 2022, 39(6): 1779-1784
作者姓名:苗登逢  肖跃雷
作者单位:西安邮电大学计算机学院,西安710121;西安邮电大学现代邮政学院,西安710121;陕西省信息化工程研究院,西安710075
基金项目:国家自然科学基金资助项目(61741216);国家重点研发计划资助项目(2018YFC08242-04);陕西省科技统筹创新工程计划资助项目(2016KTTSGY01-03)
摘    要:为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹点分成不同的时空驻点簇;然后,利用基于速度阈值的停留点簇和移动点簇识别过程将居民的每一个时空驻点簇区分为停留点簇或移动点簇;接着,利用基于K近距离的DBSCAN重要停留点聚类过程将居民的停留点分成不同的重要停留点簇;最后,利用基于KD-tree优化的KNN(K-nearest neighbor)职住地识别过程将居民的每个重要停留点识别为工作地、居住地、职住同一区域或兴趣地点区域。实验结果表明,该方法的每个过程都是合理有效的,并且最终的职住地识别效果要优于时间阈值法、累加时间法和信息熵法。

关 键 词:密度聚类  职住地识别  K-均值  基于密度的噪声空间聚类算法  KD-tree  K-近邻
收稿时间:2021-11-18
修稿时间:2022-05-16

Home-work location identification method based on spatiotemporal constrained density clustering
Miao Dengfeng and Xiao Yuelei. Home-work location identification method based on spatiotemporal constrained density clustering[J]. Application Research of Computers, 2022, 39(6): 1779-1784
Authors:Miao Dengfeng and Xiao Yuelei
Affiliation:Xi''an University of Posts DdDd Telecommunications,
Abstract:To accurately identify residential home-work locations from mobile terminal location data, this paper proposed a home-work location identification method based on spatiotemporal constrained density clustering. Firstly, the method used a K-Means based DBSCAN spatiotemporal stationary point clustering process to divide the original trajectory points of many days for each resident into different spatiotemporal stagnation point clusters. Then, it used a recognition process of residence point cluster and moving point cluster based on velocity threshold to recognize every spatiotemporal stationary point cluster of each resident as a stationary point cluster or a moving point cluster by. After that, it used a DBSCAN important residence point clustering process based on K-nearest distance to divide the residence points of each resident into different important residence point clusters. Finally, it used a KNN home-work location identification process optimized by KD-tree to identify every important residence point of each resident as a home location, a work location, a home-work location or an interest location. The experimental results show that each process of this method is reasonable and effective, and the final recognition effect of home-work locations is better than the time threshold method, the cumulative time method and the information entropy method.
Keywords:density clustering   home-work location identification   K-means   DBSCAN   KD-tree   KNN
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号