摘 要: | 为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network, CNN)-长短期记忆网络(long short term memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Attention,TA),构建CA-CNN和TA-LSTM模块,然后结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型。同时,为提高训练数据的质量并加快模型训练速度,运用K-means和决策树模型选取相似日数据, 构建基于相似日数据的向量特征时序图,最后将时序图输入TCA-CNN-LSTM负荷预测模型完成预测。以澳大利亚某地真实数据集和2016电工杯数学建模竞赛电力负荷数据为算例,分别应用TCA-CNN-LSTM模型与支持向量机、多层感知机(Multilayer perceptron, MLP)、LSTM、CNN-LSTM和CNN-Attention-LSTM模型的预测结果进行对比,实验结果表明所提方法具有更高的预测精度。
|