首页 | 本学科首页   官方微博 | 高级检索  
     

基于TCA-CNN-LSTM的短期负荷预测研究
引用本文:林涵,郝正航,郭家鹏,吴育栋. 基于TCA-CNN-LSTM的短期负荷预测研究[J]. 电测与仪表, 2023, 60(8): 73-80
作者姓名:林涵  郝正航  郭家鹏  吴育栋
作者单位:贵州大学电气工程学院,贵阳550025
基金项目:国家自然科学基金资助项目(51567005); 贵州省科技计划项目([2018]5615)
摘    要:为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network, CNN)-长短期记忆网络(long short term memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Attention,TA),构建CA-CNN和TA-LSTM模块,然后结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型。同时,为提高训练数据的质量并加快模型训练速度,运用K-means和决策树模型选取相似日数据, 构建基于相似日数据的向量特征时序图,最后将时序图输入TCA-CNN-LSTM负荷预测模型完成预测。以澳大利亚某地真实数据集和2016电工杯数学建模竞赛电力负荷数据为算例,分别应用TCA-CNN-LSTM模型与支持向量机、多层感知机(Multilayer perceptron, MLP)、LSTM、CNN-LSTM和CNN-Attention-LSTM模型的预测结果进行对比,实验结果表明所提方法具有更高的预测精度。

关 键 词:短期电力负荷  卷积神经网络  长短期记忆网络  注意力机制
收稿时间:2020-08-20
修稿时间:2020-09-08

Research on Short-term Load Forecasting Based on TCA-CNN-LSTM
Lin Han,Hao ZhengHang,Guo Jiapeng and Wu Yudong. Research on Short-term Load Forecasting Based on TCA-CNN-LSTM[J]. Electrical Measurement & Instrumentation, 2023, 60(8): 73-80
Authors:Lin Han  Hao ZhengHang  Guo Jiapeng  Wu Yudong
Affiliation:School of Electrical Engineering, Guizhou University,School of Electrical Engineering, Guizhou University,School of Electrical Engineering, Guizhou University,School of Electrical Engineering, Guizhou University
Abstract:In order to accurately mine historical data information and improve the accuracy of short-term load forecasting. the article focuses on the time series and nonlinear characteristics of the power load, based on the original one-dimensional convolutional neural net-work(CNN)-long short term memory network(LSTM) model, channel attention(CA) and temporal attention mechanism(TA) were added to the CNN and LSTM respectively, combining CA-CNN and TA-LSTM modules, we construct the TCA-CNN-LSTM hierar-chical attention mechanism short-term load forecasting model. At the same time, In order to improve the quality of training data and speed up model training, K-means and decision tree model are used to extract similar days. construct a vector feature time series dia-gram based on similar day data, and finally input the time series diagram into TCA-CNN-LSTM load forecasting to complete the pre-diction. Taking the real data set of a certain place in Australia and the power load data of the 2016 Electrician Cup Mathematical Model-ing Competition as examples, the TCA-CNN-LSTM model is applied to compare with the prediction results of support vector ma-chine(SVM), Multilayer perceptron(MLP), LSTM, CNN-LSTM and CNN-Attention-LSTM models, respectively. The experimental results show that the proposed method has higher prediction accuracy.
Keywords:Short-Term Power Load   Convolutional Neural Network   Long Short Term Memory   Attention Mechanism
本文献已被 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号