首页 | 本学科首页   官方微博 | 高级检索  
     

深度图超分辨率重建研究综述
引用本文:赵利军. 深度图超分辨率重建研究综述[J]. 计算机应用研究, 2023, 40(6)
作者姓名:赵利军
作者单位:太原科技大学
基金项目:国家自然科学基金青年基金资助项目(62202323);山西省基础研究计划资助项目(202103021223284);太原科技大学博士科研启动基金资助项目(20192023);来晋工作优秀博士奖励资金资助项目(20192055);国家自然科学基金资助项目(62072325)
摘    要:虽然高质量高分辨率的深度图能够显著地提高各种自然场景计算机视觉任务的性能,但是深度相机硬件的限制使得消费级深度相机拍摄到的深度图存在分辨率低、质量差和无效空洞等问题。深度图超分辨率重建(depth super-resolution reconstruction,DSR)是一种能有效提高深度图分辨率和质量的技术,并且DSR已经成为计算机视觉领域的研究热点。首先将介绍DSR的定义和近几年国内外DSR算法的研究进展,然后对深度学习DSR重建算法进行重点阐述与分析。接下来,将介绍深度图像质量评估准则。最后,对DSR的应用领域和未来所面对的挑战和机遇进行展望。

关 键 词:超分辨率重建   深度学习   卷积神经网络   深度图
收稿时间:2022-10-14
修稿时间:2023-05-16

Review of depth map super-resolution reconstruction research
Zhao Lijun. Review of depth map super-resolution reconstruction research[J]. Application Research of Computers, 2023, 40(6)
Authors:Zhao Lijun
Affiliation:Taiyuan University of Science and Technology
Abstract:Although high-quality and high-resolution depth maps can significantly improve the performance of computer vision tasks in various natural scenes, the limitations of depth camera hardware make the depth maps captured by consumer-level depth cameras have problems such as low resolution, poor quality, invalid holes, etc. Depth super-resolution reconstruction(DSR) is a kind of technology that can effectively improve the resolution and quality of depth maps, and DSR has become a research hot-spot in the field of computer vision. Firstly, this paper introduced the definition of DSR and the research progress of DSR algorithm at home and abroad in recent years, and then mainly stated and analyzed deep learning DSR reconstruction algorithms. Next, it introduced the depth image quality evaluation criteria. Finally, this paper prospected the application fields of DSR and the challenges as well as the opportunities in the future.
Keywords:super-resolution reconstruction   deep learning   convolutional neural network   depth map
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号