首页 | 本学科首页   官方微博 | 高级检索  
     


Geometrical analysis of woven fabric microstructure based on micron-resolution computed tomography data
Authors:Helga Krieger  Gunnar Seide  Thomas Gries  Scott E Stapleton
Affiliation:1.Department of Mechanical Engineering,University of Massachusetts Lowell,Lowell,USA;2.Institut für Textiltechnik (ITA) of RWTH Aachen University,Aachen,Germany;3.Aachen-Maastricht Institute for Biobased Materials,Maastricht University,Geleen,Netherlands
Abstract:The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D–model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy’s law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号