首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructures and degradation of heat sink very-thin quad flat package no-leads Pb-free Sn-Ag-Cu solder joints after thermal aging
Authors:W. Fredriksz
Affiliation:(1) Innovation Department, Philips Semiconductors N.V., Assembly and Test Organization, 6534 AE Nijmegen, the Netherlands
Abstract:Heat sink very-thin quad flat package no-leads (HVQFN) packages soldered with Sn-3.8Ag-0.7Cu on metallized laminate substrates have been put to thermal aging. Temperatures from 140°C to 200°C for times up to 30 weeks were applied. The solder joint microstructure develops intermetallic compound layers and voids within the solder. Due to this, the mechanical reliability of the HVQFN inner lead solder joints is degraded. The intermetallic layers are of the type (Cu, Y)6Sn5, with Y=Ni, Au or Ni+Au, as well as Cu3Sn, and follow a power law with aging time: X=C·tn, where n=0.4 to 1.9 depending on temperature. The voids within the solder are attributed to Sn depletion of the solder in favor of the growth of (Cu,Ni)6Sn5. They are more pronounced the less the solder volume is in proportion to the intermetallic diffusion area. The amount of voids is quantified as a percentage of the residual solder. The time to reach the failure criterion of 50%, i.e., t50%, is related to the absolute temperature according to an Arrhenius equation with an activation energy Ea=0.95 eV. This equation is used for determination of the maximum allowable temperature at a certain required operating lifetime.
Keywords:SAC-solder  heat sink very-thin quad flat package no-leads (HVQFN) package  solder joint microstructures  intermetallic compounds  voids  lifetime estimation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号