首页 | 本学科首页   官方微博 | 高级检索  
     


Reliability investigation and interfacial reaction of ball-grid-array packages using the lead-free Sn-Cu solder
Authors:Yoon  Jeong-Won  Kim   Sang-Won  Koo   Ja-Myeong  Kim   Dae-Gon  Jung   Seung-Boo
Affiliation:(1) Department of Advanced Materials Engineering, Sungkyunkwan University, 440-746 Suwon, Korea
Abstract:The interfacial reactions between two Sn-Cu (Sn-0.7Cu and Sn-3Cu, wt.%) ball-grid-array (BGA) solders and the Au/Ni/Cu substrate by solid-state isothermal aging were examined at temperatures between 70°C and 170°C for 0 to 100 days. For the Sn-0.7Cu solder, a (Cu,Ni)6Sn5 layer was observed in the samples aged at 70–150°C. After isothermal aging at 170°C for 50 days, the solder/Ni interface exhibited a duplex structure of (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4. For the Sn-3Cu solder, only the (Cu,Ni)6Sn5 layer was formed in all aged samples. Compared to these two Sn-Cu solders, the Cu content in the (Cu,Ni)6Sn5 layer formed at the interface increased with the Cu concentration in the Sn-xCu solders. And, the shear strength was measured to evaluate the effect of the interfacial reactions on the mechanical reliability as a function of aging conditions. The shear strength significantly decreased after aging for 1 day and then remained nearly unchanged by further prolonged aging. In all the samples, the fracture always occurred in the bulk solder. Also, we studied the electrical property of Cu/Sn-3Cu/Cu BGA packages with the number of reflows. The electrical resistivity increased with the number of reflows because of an increase of intermetallic compound (IMC) thickness.
Keywords:Sn-Cu solder  interfacial reaction  ball shear test  intermetallic compound (IMC)  isothermal aging  electrical resistivity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号