首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘支持向量机的风速预测模型
引用本文:曾杰,张华. 基于最小二乘支持向量机的风速预测模型[J]. 电网技术, 2009, 33(18): 144-147
作者姓名:曾杰  张华
作者单位:华北电力大学,可再生能源学院,北京市,昌平区,102206;华北电力大学,可再生能源学院,北京市,昌平区,102206
摘    要:风速具有较大的随机性,预测的准确度不高。针对这种现象,基于最小二乘支持向量机(least squares support vector machine,LS-SVM)理论,结合某风电场实测风速数据,建立了最小二乘支持向量机风速预测模型。对该风电场的风速进行了提前1h的预测,其预测的平均绝对百分比误差仅为8.55%,预测效果比较理想。同时将文中的风速预测模型与神经网络理论、支持向量机(support vector machine,SVM)理论建立的风速预测模型进行了比较。仿真结果表明,文中所提模型在预测精度和运算速度上皆优于其他模型。

关 键 词:风速预测  最小二乘支持向量机(LS-SVM)  风电场  支持向量机(SVM)  神经网络

A Wind Speed Forecasting Model Based on Least Squares Support Vector Machine
ZENG Jie,ZHANG Hua. A Wind Speed Forecasting Model Based on Least Squares Support Vector Machine[J]. Power System Technology, 2009, 33(18): 144-147
Authors:ZENG Jie  ZHANG Hua
Affiliation:ZENG Jie,ZHANG Hua (School of Renewable Energy,North China Electric Power University,Changping District,Beijing 102206,China)
Abstract:Due to its strong randomness,it is very difficult to predict wind speed accurately. To solve this problem,using least squares support vector machine (LS-SVM) and based on actual wind speed data measured in a certain wind farm,a wind speed predicting model based on LS-SVM is built; the one hour-ahead wind speed of this wind farm is predicted by the proposed model,and a satisfied prediction result that the mean average percentage error of the predicted wind speed is only 8.55% is obtained. The proposed wind s...
Keywords:wind speed forecasting  least squares support vector machine (LS-SVM)  wind farm  support vector machine (SVM)  neural network  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号