首页 | 本学科首页   官方微博 | 高级检索  
     

改进多目标蚁群算法在电网规划中的应用
引用本文:符杨,孟令合,胡荣,曹家麟. 改进多目标蚁群算法在电网规划中的应用[J]. 电网技术, 2009, 0(18)
作者姓名:符杨  孟令合  胡荣  曹家麟
作者单位:上海电力学院电力工程系;上海大学机电工程与自动化学院;
基金项目:上海市重点攻关计划项目(071605123); 上海市教委科研创新项目(08ZZ92); 上海市教委重点学科建设资助项目(J51301)
摘    要:
针对电网规划需综合考虑经济性和可靠性的问题,提出一种改进的多目标蚁群算法。该算法采用改进的快速排序方法构造Pareto最优解集,缩短了慢速链,降低了算法的时间复杂度;采用聚类算法裁剪非支配解,使所得解在整个Pareto解空间具有良好的多样性和分布性;采用信息素更新变参数控制,加快算法的全局收敛速度;采用挥发系数动态自适应调节机制,提高算法全局搜索能力。通过18节点电网规划算例证明,提出的改进算法与基本多目标蚁群算法相比,所得的Pareto最优解数量更多,Pareto前沿分布更加均匀,同时收敛性和快速性也得到了提高。

关 键 词:多目标蚁群算法  聚类分析  Pareto最优  电网规划  

Application of Improved Multi-Objective Ant Colony Algorithm in Power Network Planning
FU Yang,MENG Ling-he,HU Rong,CAO Jia-lin. Application of Improved Multi-Objective Ant Colony Algorithm in Power Network Planning[J]. Power System Technology, 2009, 0(18)
Authors:FU Yang  MENG Ling-he  HU Rong  CAO Jia-lin
Affiliation:FU Yang1,MENG Ling-he2,HU Rong1,CAO Jia-lin1 (1.Department of Electrical Engineering,Shanghai University of Electric Power,Yangpu District,Shanghai 200090,China,2.School of Mechatronics Engineering and Automation,Shanghai University,Zhabei District,Shanghai 200072,China)
Abstract:
For the reason that both economy and reliability should be considered during power network planning,an improved multi-objective ant colony algorithm (IMACA) is proposed. In the proposed algorithm,the modified quick sort method is adopted to construct Pareto optimal solution set,thus the slow-chain is shortened and the time complexity of this algorithm is mitigated; the clustering algorithm is adopted to modify non-dominated solution,thus the obtained solution can possess good diversity and distributivity in...
Keywords:multi-objective ant colony algorithm  clustering analysis  Pareto optimal  power network planning  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号