首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of test temperature and grain size on the charpy impact toughness and dynamic toughness (KID) of polycrystalline niobium
Authors:D. Padhi  Suffix"  >III,J. J. Lewandowski
Affiliation:(1) Applied Materials Inc., 95054 Santa Clara, CA;(2) the Department of Materials Science and Engineering, Case Western Reserve University, 44106 Cleveland, OH
Abstract:The effects of changes in test temperature (−196 °C to 25 °C) and grain size (40 to 165 μm) on the dynamic cleavage fracture toughness (K ID ) and Charpy impact toughness of polycrystalline niobium (Nb) have been investigated. The ductile-to-brittle transition was found to be affected by both changes in grain size and the severity of stress concentration (i.e., notch vs fatigue-precrack). In addition to conducting impact tests on notched and fatigue-precracked Charpy specimens, extensive fracture surface analyses have been performed in order to determine the location of apparent cleavage nucleation sites and to rationalize the effects of changes in microstructure and experimental variables on fracture toughness. Existing finite element analyses and the stress field distributions ahead of stress concentrators are used to compare the experimental observations with the predictions of various fracture models. The dynamic cleavage fracture toughness, K ID , was shown to be 37±4 MPa√m and relatively independent of grain size (i.e., 40 to 105 μm) and test temperature over the range −196 °C to 25 °C.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号