首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive model-based motion estimation
Authors:Crinon  RJ Kolodziej  WJ
Affiliation:Dept. of Electr. and Comput. Eng., Oregon State Univ., Corvallis, OR.
Abstract:A general discrete-time, adaptive, multidimensional framework is introduced for estimating the motion of one or several object features from their successive nonlinear projections on an image plane. The motion model consists of a set of linear difference equations with parameters estimated recursively from a nonlinear observation equation. The model dimensionality corresponds to that of the original, nonprojected motion space, thus allowing to compensate for variable projection characteristics such as paning and zooming of the camera. Extended recursive least-squares and linear-quadratic tracking algorithms are used to adaptively adjust the model parameters and minimize the errors of either smoothing, filtering or prediction of the object trajectories in the projection plane. Both algorithms are derived using a second order approximation of the projection nonlinearities. All the results presented here use a generalized vectorial notation suitable for motion estimation of any finite number of object features and various approximations of the nonlinear projection. The application of the model-based motion estimator for temporal decimation/interpolation in digital video sequence compression systems is presented.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号