首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilization of periodic orbits near a subcritical Hopf bifurcation in delay-coupled networks
Authors:Chol-Ung Choe  Hyok Jang  Valentin Flunkert  Thomas Dahms  Philipp Hövel
Affiliation:1. Department of Physics , University of Science , Unjong-District , Pyongyang , DPR Korea;2. Institut für Theoretische Physik , Technische Universit?t Berlin , Hardenbergstra?e 36, 10623 Berlin , Germany;3. Instituto de Fisica Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC , Campus Universitat de les Illes Balears , E-07122 Palma de Mallorca , Spain;4. Institut für Theoretische Physik , Technische Universit?t Berlin , Hardenbergstra?e 36, 10623 Berlin , Germany;5. Bernstein Center for Computational Neuroscience , Humboldt-Universit?t zu Berlin , Philippstra?e 13, 10115 Berlin , Germany
Abstract:We study networks of delay-coupled oscillators with the aim to extend time-delayed feedback control to networks. We show that unstable periodic orbits of a network can be stabilized by a noninvasive, delayed coupling. We state criteria for stabilizing the orbits by delay-coupling in networks and apply these to the case where the local dynamics is close to a subcritical Hopf bifurcation, which is representative of systems with torsion-free unstable periodic orbits. Using the multiple scale method and the master stability function approach, the network system is reduced to the normal form, and the characteristic equations for Floquet exponents are derived in an analytical form, which reveals the coupling parameters for successful stabilization. Finally, we illustrate the results by numerical simulations of the Lorenz system close to a subcritical Hopf bifurcation. The unstable periodic orbits in this system have no torsion, and hence cannot be stabilized by the conventional time delayed-feedback technique.
Keywords:Hopf bifurcation  stabilization  control  delay  networks
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号