Prospects for fission gas extraction from in-reactor UO2 nuclear fuel elements |
| |
Authors: | D. Giusti D.G. Andrews |
| |
Affiliation: | Department of Chemical Engineering, University of Toronto, Canada |
| |
Abstract: | Due to the many problems encountered in the design of fuel rods for the safe operation of commercial nuclear reactors, caused by the fission gases generated by the fission of fissile material, it was considered opportune to make a theoretical analysis of the feasibility of extraction of fission gases from the fuel rod while in operation.This analysis in the steady state of a Zircaloy-2 sheathed fuel rod containing UO2 as a fuel, with a 2 mm (2.7 vol.%) diameter porous graphite cylinder inserted in the centre, has demonstrated that a total volume of fission gases (xenon, krypton, and iodine) of about 1.1 × 10−6 cm3/s (at STP) can be extracted from the fuel rod at a controlled rate, determined by the inherent property of fission gas migration towards the centre of the fuel rod from its place of formation. In this analysis, the fuel rod was assumed to be subjected to irradiation in a reactor the size of a Bruce “A” reactor, operating at 3000 megawatts thermal power. The extracted volume of gas was calculated on a 900 h cycle after the first 90 h of reactor operation had elapsed. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|