首页 | 本学科首页   官方微博 | 高级检索  
     


Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles
Authors:Spencer Matthew T  Shields Laura G  Prather Kimberly A
Affiliation:Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0314, USA.
Abstract:Simultaneous measurements of the effective density and chemical composition of individual ambient particles were made in Riverside, California by coupling a differential mobility analyzer (DMA) with an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS). In the summer, chemically diverse particle types (i.e., aged-OC, vanadium-OC-sulfate-nitrate, biomass) all had similar effective densities when measured during the same time period. This result suggests that during the summer study the majority of particle mass for the different particle types was dominated by secondary species (OC, sulfates, nitrates) of the same density, while only a small fraction of the total particle mass is accounted for by the primary particle cores. Also shown herein, the effective density is a dynamic characteristic of the Riverside, CA ambient aerosol, changing by as much as 40% within 16 h. During the summer measurement period, changes in the ambient atmospheric water content correlated with changes in the measured effective densities which ranged from approximately 1.0 to 1.5 g x cm(-3). This correlation is potentially due to evaporation of water from particles in the aerodynamic lens. In contrast, in the fall during a Santa Ana meteorological event, ambient particles with a mobility diameter of 450 nm showed three distinct effective densities, each related to a chemically unique particle class. Particles with effective densities of approximately 0.27 g x cm(-3), 0.87 g x cm(-3), and 0.93 g x cm(-3) were composed mostly of elemental carbon, lubricating oil, and aged organic carbon, respectively. It is interesting to contrast the seasonal differences where in the summer, particle density and mass were determined by high amounts of secondary species, whereas in the fall, relatively clean and dry Santa Ana conditions resulted in freshly emitted particles which retained their distinct source chemistries and densities.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号