首页 | 本学科首页   官方微博 | 高级检索  
     


Dot Matrix Hardening of Steels Using a Fiber Optic Coupled Pulsed Nd:YAG Laser
Authors:L Xue  M U Islam  G McGregor
Affiliation:  a Integrated Manufacturing Technologies Institute National Research Council Canada 800 Collip Circle, London, Ontario, Canada
Abstract:This paper describes a novel process called “Dot Matrix Hardening” as applied to Ol, D2 and AISI 4340 steels. This process uses a pulsed laser (particularly an Nd:YAG laser) to create a uniform distribution of transformation-hardened spots to cover only a certain percentage of the desired surface. Due to significantly reduced energy input, wear resistance can be imparted to thin and intricate parts without distortion. In addition, with the use of a coupled fiber optic beam delivery system, this process provides greater flexibility compared to conventional CO2 laser hardening for a number of applications. The use of an Nd:YAG laser also eliminates the need of absorptive coating required for hardening with a CO2 laser. With optimized processing parameters, a relatively uniform hardened layer is obtained within the hardened spot, with a thickness of about 60 um and hardness values around 800 HV100. The sliding wear test results show that the wear resistance of Ol samples with only 20-40% area coverage of laser-hardened spots is similar to the 100% covered laser dot hardened sample as well as the furnace hardened (Re 60) sample.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号