首页 | 本学科首页   官方微博 | 高级检索  
     


Photoresist deposition without spinning
Authors:Percin  G Khuri-Yakub  BT
Affiliation:Edward L. Ginzton Lab., Stanford Univ., CA, USA;
Abstract:A technique for resist deposition using a novel fluid ejection method is presented in this paper. An ejector has been developed to deposit photoresist on silicon wafers without spinning. Drop-on-demand coating of the wafer reduces waste and the cost of coating wafers. Shipley 1400-21, 1400-27, 1805, and 1813 resists were used to coat sample 3- and 4-in wafers. Later, these wafers were exposed and developed. The deposited resist film was 3.5 /spl mu/m thick and had a surface roughness of about 0.2 /spl mu/m. The ultimate goal is to deposit resist films with a thickness of the order of 0.5 /spl mu/m and a surface roughness of the order of 30 /spl Aring/, which is currently achieved for 200-mm silicon wafers by using a spinning method. Such goals can be attained by using micromachined multiple ejectors or with better control over the deposition environment. In the micromachined configuration, thousands of ejectors are made into a silicon die, as presented by Percin et al. (2002), and thus allow for a full coating of a wafer in a few seconds. Coating in a clean environment will allow the lithography of circuits for microelectronic applications. Other potential applications for the technology in the semiconductor manufacturing are in deposition of low-k materials, wafer cleaning, manufacturing of organic LEDs and organic FETs, direct lithography, nanolithography, and coating for hard-disk drives.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号