首页 | 本学科首页   官方微博 | 高级检索  
     

基于密集网络的质子热声信号走时提取
引用本文:张登峰,张东. 基于密集网络的质子热声信号走时提取[J]. 半导体光电, 2021, 42(3): 442-446. DOI: 10.16818/j.issn1001-5868.2021.03.026
作者姓名:张登峰  张东
作者单位:武汉大学物理科学与技术学院,武汉430072
基金项目:国家重点研发计划项目(2011CB707900).*通信作者:张东
摘    要:针对临床上由质子热声信号脉宽和信噪比的不确定性引起的走时提取困难问题,提出了一种基于密集网络的走时提取算法.该算法使用密集块代替传统卷积块,融合了具有不同感受野的特征,并引入了深度监督和网络剪枝机制,利用标记好的质子束热声信号数据进行学习,以提取所需的走时信息.实验结果表明,相比其他算法,该算法对质子热声信号走时的提取具有较高的准确率和鲁棒性,同时展现了实时提取的可行性.

关 键 词:质子热声信号  布拉格峰  密集网络  深度监督  网络剪枝  走时
收稿时间:2021-03-24

Proton Thermoacoustic Signal Travel Time Extraction Based on Dense Network
ZHANG Dengfeng,ZHANG Dong. Proton Thermoacoustic Signal Travel Time Extraction Based on Dense Network[J]. Semiconductor Optoelectronics, 2021, 42(3): 442-446. DOI: 10.16818/j.issn1001-5868.2021.03.026
Authors:ZHANG Dengfeng  ZHANG Dong
Affiliation:School of Physics and Technology, Wuhan University, Wuhan 430072, CHN
Abstract:Aiming at the difficulty in extracting travel time caused by the uncertainty of the pulse width and signal-to-noise ratio of proton thermoacoustic signals in clinic, a travel time extraction algorithm based on dense network is proposed. The algorithm uses dense blocks instead of traditional convolutional blocks, combines features with different receptive fields, and introduces deep supervision and network pruning mechanisms. It uses labeled proton beam thermoacoustic signal data for learning to extract the required time information. The experimental results show that, compared with other algorithms, the proposed algorithm has higher accuracy and robustness for the extraction of proton thermoacoustic signal travel time, and shows the feasibility of real-time extraction.
Keywords:proton thermoacoustic signal   Bragg peak   dense network   deep supervision   model pruning   travel time
本文献已被 万方数据 等数据库收录!
点击此处可从《半导体光电》浏览原始摘要信息
点击此处可从《半导体光电》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号