首页 | 本学科首页   官方微博 | 高级检索  
     


Generalized incremental frequency method for topological designof continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency
Authors:Niels Olhoff  Jianbin Du
Abstract:The application of multidisciplinary design optimisation is mostly confined to bi-disciplinary systems such as fluid-structure interaction problems. High fidelity models of three disciplines involving electromagnetic-thermal-structural designs are rare. Here, the multidisciplinary optimisation of such a design is presented. The device comprises a C-shaped iron core and a single coil. The problem is decomposed using a monolithic multidisciplinary feasible architecture. The multidisciplinary analyses involve a single three-dimensional finite element mesh for transient non-linear electromagnetic, non-linear-static thermal, and linear-static structural models. During each multidisciplinary iteration the mesh is linearly morphed. A gradient based optimisation algorithm in combination with a multi-start routine is applied to the constrained mass minimisation problem. Multidisciplinary feasibility is ensured by convergence of a single coupling parameter i.e. air-gap deformation. In conclusion, some multidisciplinary optimisation, analyses, and decomposition considerations are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号