首页 | 本学科首页   官方微博 | 高级检索  
     


Analyzing bivariate continuous data grouped into categories defined by empirical quantiles of marginal distributions
Authors:CB Borkowf  MH Gail  RJ Carroll  RD Gill
Affiliation:National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, Maryland 20892-7368, USA.
Abstract:Epidemiologists sometimes study the association between two measurements of exposure on the same subjects by grouping the original bivariate continuous data into categories that are defined by the empirical quantiles of the two marginal distributions. Although such grouped data are presented in a two-way contingency table, the cell counts in this table do not have a multinomial distribution. We describe the joint distribution of counts in such a table by the term empirical bivariate quantile-partitioned (EBQP) distribution. Blomqvist (1950, Annals of Mathematical Statistics 21, 539-600) gave an asymptotic EBQP theory for bivariate data partitioned by the sample medians. We demonstrate that his asymptotic theory is not correct, however, except in special cases. We present a general asymptotic theory for tables of arbitrary dimensions and apply this theory to construct confidence intervals for the kappa statistic. We show by simulations that the confidence interval procedures we propose have near nominal coverage for sample sizes exceeding 60 for both 2 x 2 and 3 x 3 tables. These simulations also illustrate that the asymptotic theory of Blomqvist (1950) and the methods that Fleiss, Cohen, and Everitt (1969, Psychological Bulletin 72, 323-327) give for multinomial tables can yield subnominal coverage for kappa calculated from EBQP tables, although in some cases the coverage for these procedures is near nominal levels.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号