首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的抽油机井下故障诊断专家系统
引用本文:陈勇殿,李瀚涛,季永亮. 基于神经网络的抽油机井下故障诊断专家系统[J]. 国外电子元器件, 2014, 0(1): 130-132,136
作者姓名:陈勇殿  李瀚涛  季永亮
作者单位:[1]江苏油田试采一厂江苏扬州225268 [2]南京南大数字科技有限公司江苏南京211100
摘    要:本课题是针对油田边远井、孤立井创新的提出了手持自动化功图诊断系统。本文以抽油机作为研究对象,从油井的示功图入手,利用自组织竞争网络对抽油井示功图进行智能识别分类,实现油井故障的自动诊断。本文所研究的基于神经网络的故障诊断系统在手持Android终端得到了实现,并且江苏油田得到了广泛应用。

关 键 词:ZigBee  Android  故障诊断  特征提取  模型构

Oil pumping motor-pumped wells based on neural network fault diagnosis expert system
CHEN Yong-dian,LI Han-tao,JI Yong-liang. Oil pumping motor-pumped wells based on neural network fault diagnosis expert system[J]. International Electronic Elements, 2014, 0(1): 130-132,136
Authors:CHEN Yong-dian  LI Han-tao  JI Yong-liang
Affiliation:1. Jiangsu Oilfield Trial Mining Factory, Yangzhou 225268, China; 2. Nanjing Nanda Digital Science and Technology Co.Ltd, Nanjing 211100, China)
Abstract:This article proposal hand-held automated fault dagnosis systems innovatively is mainly for the remote oil field wells. This paper presents a fault diagnosis of self-organizing competitive neural network. Pumping as the object of study, indicator diagram is used to acquire to the fault characteristic, using the self-organizing competitive network to achieve intelligent classification and diagnose fault diagnosis automatically. Indicator diagram evalution researched in this paper has achieved hand-held automated fault dagnosis systems in and has been widely used in Jiangsu Oilfield.
Keywords:ZigBee  Android  fault diagnosis  feature extraction  model
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号