首页 | 本学科首页   官方微博 | 高级检索  
     

等截面梁纯弯曲振动的几何非线性分析
引用本文:高永毅,焦群英,唐果,郎悦. 等截面梁纯弯曲振动的几何非线性分析[J]. 振动与冲击, 2003, 22(1): 72-74
作者姓名:高永毅  焦群英  唐果  郎悦
作者单位:1. 湖南湘潭师范学院物理系,湘潭,411201;中国农业大学基础科学部,北京,100083
2. 中国农业大学基础科学部,北京,100083
3. 湖南湘潭师范学院数学系,湘潭,411201
摘    要:在讨论梁纯弯曲微幅振动时,考虑在材料力学的讨论中梁的挠度微分方程忽略项后,线性问题变为非线性问题。利用非线性理论对该非线性问题进行了讨论,得到了周期解稳定和不稳定区域的分界线方程和频率响应方程,得到忽略挠度几何非线性因素的条件。

关 键 词:等截面梁 弯曲振动 稳态性 频率响应特性 运动方程 几何非线性
修稿时间:2002-03-11

Geometrically Nonlinear Analysis for Pure Bending Vibration of Beam with Uniform Section
Gao Yongyi , Jiao Qunying Yang Guo Lang Yue. Geometrically Nonlinear Analysis for Pure Bending Vibration of Beam with Uniform Section[J]. Journal of Vibration and Shock, 2003, 22(1): 72-74
Authors:Gao Yongyi    Jiao Qunying Yang Guo Lang Yue
Affiliation:Gao Yongyi 1,3 Jiao Qunying 3 Yang Guo 2 Lang Yue 3
Abstract:The linear question of pure bending vibration of a uniform beam will be turned to a nonlinear one if in the differential equation with respect to dynamic deflection the ignored terms of higher order will be again taken into consideration.By use of nonlinear vibration theory.the question is discussed and analysed.The equations of boundary lines between the stable and unstable regions for periodic solution are gained and the frequency response equations are obtained as well.The condition under which the geometrically nonlinear factor can be ignored is discussed.
Keywords:beam  vibration  geomstrically nonlinear
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号