首页 | 本学科首页   官方微博 | 高级检索  
     


MOLECULAR DYNAMICS SIMULATION OF THE INTERACTION BETWEEN 30o PARTIAL DISLOCATION AND MONOVACANCY IN Si
Authors:WANG Chaoying  MENG Qingyuan  WANG Yuntao
Affiliation:Dept of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin 150001
Abstract:Dislocation and monovacancy (V1) are the fundamental defects in Si. The interaction between them is concerned with the electronic and optical properties of electronic devices. In this paper, the interactions of 30o partial dislocation with V1 in Si were investigated by the molecular dynamics simulation method based on the Stillinger–Weber (SW) potential. The simulations were conducted under different temperature and shear stress conditions. The results show that 30o partial dislocation is pinned when dislocation encounters the V1 under the conditions that shear stress is relatively low and the temperature is kept constant. When the shear stress increases to a critical value, the dislocation can overcome the pin and the V1 is left in the crystal. As the temperature increases, the critical shear stress decreases approximately as a linear function. Moreover, the values of the critical shear stress corresponding to different dislocation kinks also show that the abilites of kinks to overcome the pin are determinded by the migration barriers of kinks. In comparison of the locations of dislocation core in two models with and without V1, it is found that the V1 can make the 30o partial dislocation move faster once the dislocation glides away from the V1 .
Keywords:Si  o partial dislocationzz')"   href="  #"  > 30o partial dislocation  monovacancy  molecular dynamics  kink
点击此处可从《金属学报》浏览原始摘要信息
点击此处可从《金属学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号