首页 | 本学科首页   官方微博 | 高级检索  
     


CDDO-Me Attenuates Clasmatodendrosis in CA1 Astrocyte by Inhibiting HSP25-AKT Mediated DRP1-S637 Phosphorylation in Chronic Epilepsy Rats
Authors:Duk-Shin Lee  Tae-Hyun Kim  Hana Park  Ji-Eun Kim
Affiliation:1.Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (D.-S.L.); (T.-H.K.); (H.P.);2.Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
Abstract:Clasmatodendrosis is one of the irreversible astroglial degeneration, which is involved in seizure duration and its progression in the epileptic hippocampus. Although sustained heat shock protein 25 (HSP25) induction leads to this autophagic astroglial death, dysregulation of mitochondrial dynamics (aberrant mitochondrial elongation) is also involved in the pathogenesis in clasmatodendrosis. However, the underlying molecular mechanisms of accumulation of elongated mitochondria in clasmatodendritic astrocytes are elusive. In the present study, we found that clasmatodendritic astrocytes showed up-regulations of HSP25 expression, AKT serine (S) 473 and dynamin-related protein 1 (DRP1) S637 phosphorylations in the hippocampus of chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; bardoxolone methyl or RTA 402) abrogated abnormal mitochondrial elongation by reducing HSP25 upregulation, AKT S473- and DRP1 S637 phosphorylations. Furthermore, HSP25 siRNA and 3-chloroacetyl-indole (3CAI, an AKT inhibitor) abolished AKT-DRP1-mediated mitochondrial elongation and attenuated clasmatodendrosis in CA1 astrocytes. These findings indicate that HSP25-AKT-mediated DRP1 S637 hyper-phosphorylation may lead to aberrant mitochondrial elongation, which may result in autophagic astroglial degeneration. Therefore, our findings suggest that the dysregulation of HSP25-AKT-DRP1-mediated mitochondrial dynamics may play an important role in clasmatodendrosis, which would have implications for the development of novel therapies against various neurological diseases related to astroglial degeneration.
Keywords:3CAI  AKT  astrocyte  astroglial degeneration  autophagy  epilepsy  HSP25  seizure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号