首页 | 本学科首页   官方微博 | 高级检索  
     


Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups
Authors:Gyudo Lee  Hyungbeen Lee  Kihwan Nam  Jae-Hee Han  Jaemoon Yang  Sang Woo Lee  Dae Sung Yoon  Kilho Eom  Taeyun Kwon
Affiliation:1. Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
2. Centre for Advanced Materials Technology, School of Aerospace Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, New South Wales, 2006, Australia
3. Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
Abstract:Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.
Keywords:Au nanoparticle  Dopamine  Surface chemistry  Atomic force microscopy  Lateral force microscopy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号