首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical Study of Combination Parameters for Particle Impact Velocity and Temperature in Cold Spray
Authors:H Katanoda  M Fukuhara  N Iino
Affiliation:(1) Department of Mechanical Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
Abstract:Numerical simulations of gas/particle flows of cold spray are performed for N2 and He, respectively, to investigate the usefulness of the two material-independent combination parameters derived from the equations of particle motion and temperature. The first combination parameter is the particle-diameter multiplied by the material density, which governs the particle velocity. The second one is the squared particle-diameter multiplied by the material density and specific heat, which affects the particle temperature. In the numerical simulation, the materials of the spray particle selected are WC-12Co, Cu and Ti. The numerical results show that the maximum impact velocity of particle is obtained, when the first combination parameter takes specific value regardless of the material type. Furthermore, it is shown that the particle diameter and its temperature corresponding to the maximum impact velocity can be graphically estimated by using the two combination parameters for any powder-materials normally used for the thermal spray. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.
Keywords:cold spray  particle impact-velocity  numerical simulation  gasdynamics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号