首页 | 本学科首页   官方微博 | 高级检索  
     

带密度加权的自适应遗传算法
引用本文:聂文亮,蔡黎,邱刚,李春莉. 带密度加权的自适应遗传算法[J]. 计算机系统应用, 2018, 27(1): 137-142
作者姓名:聂文亮  蔡黎  邱刚  李春莉
作者单位:重庆三峡学院 信号与信息处理重点实验室, 重庆 404000,重庆三峡学院 信号与信息处理重点实验室, 重庆 404000,重庆三峡学院 信号与信息处理重点实验室, 重庆 404000,重庆三峡学院 信号与信息处理重点实验室, 重庆 404000
基金项目:重庆市教委基金(KJ1601022);重庆高校创新团队建设计划(CXTDX201601034)
摘    要:为了改善传统自适应遗传算法收敛速度慢、易陷入局部最优解的情况,提出了带密度加权的自适应遗传算法. 该算法基于种群的分布密度,动态调整遗传算法的交叉概率和变异概率,并且在算法中使用了保留最佳个体法. 实验结果表明:该算法在破坏种群局部稳定性、跳出局部极值的同时,又能以较快的速度收敛于全局最优,提高了算法的实用性和鲁棒性.

关 键 词:遗传算法  自适应  密度加权
收稿时间:2017-03-28
修稿时间:2017-04-20

Adaptive Genetic Algorithm with Density Weighted
NIE Wen-Liang,CAI Li,QIU Gang and LI Chun-Li. Adaptive Genetic Algorithm with Density Weighted[J]. Computer Systems& Applications, 2018, 27(1): 137-142
Authors:NIE Wen-Liang  CAI Li  QIU Gang  LI Chun-Li
Affiliation:Signal and Information Processing Key Lab, Chongqing Three Gorges University, Chongqing 404000, China,Signal and Information Processing Key Lab, Chongqing Three Gorges University, Chongqing 404000, China,Signal and Information Processing Key Lab, Chongqing Three Gorges University, Chongqing 404000, China and Signal and Information Processing Key Lab, Chongqing Three Gorges University, Chongqing 404000, China
Abstract:The traditional adaptive genetic algorithm is slow in convergence and easy to fall into the local optimal solution. In order to resolve this problem, an adaptive genetic algorithm with density weighted is put forward in this study. Based on distribution density of population, this new algorithm can dynamically change the crossover probability and mutation probability of genetic algorithm, and combine with the best individual method. The results of the experiment show that the new algorithm can change the stability of local population, speed up the convergence, and improve its robustness and application.
Keywords:genetic algorithm  adaptive  density weighted
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号