首页 | 本学科首页   官方微博 | 高级检索  
     

改进的分水岭算法在焊接图像中的应用
引用本文:王明泉,柴黎. 改进的分水岭算法在焊接图像中的应用[J]. 焊接学报, 2007, 28(7): 13-16
作者姓名:王明泉  柴黎
作者单位:中北大学,仪器科学与动态测试教育部重点实验室,太原,030051;中北大学,仪器科学与动态测试教育部重点实验室,太原,030051
基金项目:中国博士后科学基金 , 山西省自然科学基金 , 中北大学校科研和教改项目
摘    要:针对焊接缺陷X射线检测方法的现状和目前存在的主要问题,提出了一种改进的分水岭算法.从图像的结构信息考虑,由于噪声产生的谷底值是很小的,而对应于真正的区域,每个区域的最小谷底会有一个很大的动态值,这个值与没有噪声时的谷底动态值相近.因此,只要简单地给一个阈值,通过动态合并准则进行边分割边合并就可以将那些由噪声产生的谷底滤掉,从而也就抑制了过分割问题.结果表明,该方法能够快速、准确地得到焊接图像的分割结果.

关 键 词:分水岭  动态合并准则  缺陷图像
文章编号:0253-360X(2007)07-013-04
收稿时间:2006-07-19
修稿时间:2006-07-19

Application of an improved watershed algorithm in welding image segmentation
WANG Mingquan and CHAI Li. Application of an improved watershed algorithm in welding image segmentation[J]. Transactions of The China Welding Institution, 2007, 28(7): 13-16
Authors:WANG Mingquan and CHAI Li
Affiliation:Key Laboratory for Instrumentation Science and Dynamic Test, The Ministry of Education, North University of China, Taiyuan 030051, China and Key Laboratory for Instrumentation Science and Dynamic Test, The Ministry of Education, North University of China, Taiyuan 030051, China
Abstract:In view of the present state of welding flaw X-ray test method and open problem, an improved watershed algorithm is proposed. In consideration of the structure information of image, the valley-bottom value produced by noise is very small. However, the minimum valley-bottom of each area well have a very big dynamic value corresponding to real area, which is close to the valley-bottom dynamic value when there is no noise. Hence, the valley-bottom produced by noise can be flitered, thus effectively restraining the over-segmentation, provided that a threshold is simply given based on the dynamic combination rule. Experimental results show that the algorithm can quickly and accurately obtain the segmentation result of flaw image. Futhermore, it has higher ability in resisting noise.
Keywords:watershed  dynamics combination rule  flaw image
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《焊接学报》浏览原始摘要信息
点击此处可从《焊接学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号