首页 | 本学科首页   官方微博 | 高级检索  
     


A micromachined vibration isolation system for reducing the vibration sensitivity of surface transverse wave resonators
Authors:Reid J R  Bright V M  Kosinski J A
Affiliation:Rome Lab., Hanscom AFB, MA;
Abstract:A micromachined system has been developed for reducing the vibration sensitivity of surface transverse wave (STW) resonators. The isolation system consists of a support platform for mounting the STW resonator, four support arms, and a support rim. The entire isolation system measures 8 mm by 9 mm by 0.4 mm without the resonator mounted on the platform. The system acts as a passive vibration isolation system, decreasing the magnitude of high frequency (>1.2 kHz) vibrations. Finite element analysis is used to analyze the acceleration sensitivity of the mounted resonator. The isolation system is then modeled as a damped mass-spring system and the transmissibility of vibration from the support rim to the support platform is calculated. Multiplying the acceleration sensitivity of the resonator by the transmissibility results in the expected system vibration sensitivity. The isolation systems are fabricated using two sided bulk etching of (110) oriented silicon wafers. STW resonators were mounted on the isolation systems, and the isolated units were mounted on commercial hybrid oscillator substrates. Vibration sensitivity measurements were taken for vibrations with frequencies ranging from 100 Hz to 5 kHz. The measured data show that the system performs as expected with a low frequency (<500 Hz) vibration sensitivity of 1.8×10-8/g and a high frequency roll off of 12 dB/octave
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号