首页 | 本学科首页   官方微博 | 高级检索  
     


Spectrum auction with interference constraint for cognitive radio networks with multiple primary and secondary users
Authors:Lin Chen  Stefano Iellamo  Marceau Coupechoux  Philippe Godlewski
Affiliation:(1) Laboratoire de Recherche en Informatique (LRI), CNRS, University of Paris-Sud XI and INRIA, 91405 Orsay, France;(2) Department of Computer Science and Networking, TELECOM ParisTech, LTCI CNRS 5141, 46 Rue Barrault, 75013 Paris, France
Abstract:Extensive research in recent years has shown the benefits of cognitive radio technologies to improve the flexibility and efficiency of spectrum utilization. This new communication paradigm, however, requires a well-designed spectrum allocation mechanism. In this paper, we propose an auction framework for cognitive radio networks to allow unlicensed secondary users (SUs) to share the available spectrum of licensed primary users (PUs) fairly and efficiently, subject to the interference temperature constraint at each PU. To study the competition among SUs, we formulate a non-cooperative multiple-PU multiple-SU auction game and study the structure of the resulting equilibrium by solving a non-continuous two-dimensional optimization problem, including the existence, uniqueness of the equilibrium and the convergence to the equilibrium in the two auctions. A distributed algorithm is developed in which each SU updates its strategy based on local information to converge to the equilibrium. We also analyze the revenue allocation among PUs and propose an algorithm to set the prices under the guideline that the revenue of each PU should be proportional to its resource. We then extend the proposed auction framework to the more challenging scenario with free spectrum bands. We develop an algorithm based on the no-regret learning to reach a correlated equilibrium of the auction game. The proposed algorithm, which can be implemented distributedly based on local observation, is especially suited in decentralized adaptive learning environments as cognitive radio networks. Finally, through numerical experiments, we demonstrate the effectiveness of the proposed auction framework in achieving high efficiency and fairness in spectrum allocation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号