首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum transport of pseudospin-polarized Dirac fermions in gapped graphene nanostructures
Authors:Leyla Majidi  Malek Zareyan
Affiliation:1. Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan, 45137-66731, Iran
Abstract:We investigate the unusual features of the quantum transport in gapped monolayer graphene, which is in a pseudospin symmetry-broken state with a net perpendicular pseudomagnetization. Using these pseudoferromagnets (PFs), we propose a perfect pseudospin valve effect that can be used for realizing pseudospintronics in monolayer graphene. The peculiarity of the associated effects of pseudospin injection and pseudospin accumulation are also studied. We further demonstrate the determining effect of the sublattice pseudospin degree of freedom on Andreev reflection and the associated proximity effect in hybrid structures of PFs and a superconductor in S/PF and PF/S/PF geometries. In particular, we find a peculiar Andreev reflection that is associated with an inversion of the z component of the carriers pseudospin vector. Our results show that the gapped normal graphene behaves like a ferromagnetic graphene and the effect of the pseudospin degree of freedom in gapped graphene is as important as the spin in a ferromagnetic graphene.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号