首页 | 本学科首页   官方微博 | 高级检索  
     

一种自适应模糊Actor-Critic学习
引用本文:王雪松,程玉虎,易建强. 一种自适应模糊Actor-Critic学习[J]. 控制与决策, 2006, 21(9): 1068-1072
作者姓名:王雪松  程玉虎  易建强
作者单位:中国矿业大学,信息与电气工程学院,江苏,徐州,221008;中国科学院,自动化研究所,北京,100080
摘    要:提出一种基于模糊RBF网络的自适应模糊Actor—Critic学习.采用一个模糊RBF神经网络同时逼近Actor的动作函数和Critic的值函数,解决状态空间泛化中易出现的“维数灾”问题.模糊RBF网络能够根据环境状态和被控对象特性的变化进行网络结构和参数的自适应学习,使得网络结构更加紧凑,整个模糊Actor—Critic学习具有泛化性能好、控制结构简单和学习效率高的特点.MountainCar的仿真结果验证了所提方法的有效性.

关 键 词:Actor-Critic学习  模糊推理系统  RBF网络  泛化
文章编号:1001-0920(2006)09-1068-05
收稿时间:2005-06-07
修稿时间:2005-08-31

A Kind of Adaptive Fuzzy Actor-Critic Learning
WANG Xue-song,CHENG Yu-hu,YI Jian-qiang. A Kind of Adaptive Fuzzy Actor-Critic Learning[J]. Control and Decision, 2006, 21(9): 1068-1072
Authors:WANG Xue-song  CHENG Yu-hu  YI Jian-qiang
Affiliation:1. School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221008, China; 2. Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China.
Abstract:An adaptive fuzzy Actor-Critic reinforcement learning based on a fuzzy radial basis function network is proposed,which can solve the 'curse of dimensionality' problem caused by state space generalization.A fuzzy RBF network is used to approximate both the action function of Actor and the value function of Critic simultaneously.The fuzzy RBF network is able to adjust its structure and parameters in an adaptive way with a self-organizing approach according to the change of environment state and the characteristics of the plant during the learning process,which ensures network size is economical.The proposed fuzzy Actor-Critic learning has advantages of perfect generalization ability,simple control structure,and high learning efficiency.Simulation experiment on Mountain Car control shows the validity of the proposed algorithm.
Keywords:Actor-Critic learning   Fuzzy inference system   Radial basis function network   Generalization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号