首页 | 本学科首页   官方微博 | 高级检索  
     

遗传算法在多目标优化应用中的对比研究
引用本文:宋立敏,贾小平,韩方煜. 遗传算法在多目标优化应用中的对比研究[J]. 计算机与应用化学, 2005, 22(11): 1079-1082
作者姓名:宋立敏  贾小平  韩方煜
作者单位:青岛科技大学计算机与化工研究所,山东,青岛,266042;青岛科技大学计算机与化工研究所,山东,青岛,266042;青岛科技大学计算机与化工研究所,山东,青岛,266042
基金项目:国家重点基础研究规划项目资助(G20000263).
摘    要:多目标优化应用研究在过程工程领域越来越受重视。本文首先给出了多目标优化问题的一般形式,指出多目标问题求解任务:引导搜索向整个的Pareto优化范围;Pareto优化前沿上保持解集的多样性。在简要论述遗传算法求解多目标技术的基础上,对应用了遗传算法求解多目标的两种方法进行了对比研究,并给出了线性加权遗传算法和一种多目标遗传算法的计算框图。指出线性加权法求解Pareto最优解时不能不能很好地处理非凸区域、均匀分布的权重值不能生成均匀分布的Pareto前沿等局限性,以及多目标遗传算法生成种群多样性及Pareto最优解均匀分布的优点,并用实例进行了验证说明。

关 键 词:多目标优化  线性加权法  多目标遗传算法
文章编号:1001-4160(2005)11-1079-1082
收稿时间:2004-04-09
修稿时间:2004-04-092005-09-28

Genetic algorithm applied to Multi-objective optimization:A comparative study
SONG LiMin,JlA XiaoPing,HAN FangYu. Genetic algorithm applied to Multi-objective optimization:A comparative study[J]. Computers and Applied Chemistry, 2005, 22(11): 1079-1082
Authors:SONG LiMin  JlA XiaoPing  HAN FangYu
Affiliation:Research Center of Computers and Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
Abstract:The problem statement of multi-objective optimization problem ( MOP) is firstly presented.The goals of problem solving are to guide the search process towards the global Pareto-optimal region and maintain population diversity in the Pareto-optimal front.After reviewing MOP techniques using genetic algorithm (GA) ,two methods are presented and compared.The frameworks of these methods are introduced.And lastly,two practical examples are carried out.The results show that: (1) the drawbacks of weighted sum approach using GA for Pareto set generation is observed,and (2) Multi-objective genetic algorithm have the advantages of the diversity of population and the uniform spread of Pareto-optimal solutions.
Keywords:muhi-objective optimization   weighted sum approach   multi-objective genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号