首页 | 本学科首页   官方微博 | 高级检索  
     


Architecture of a Terabit Free-Space Intelligent Optical Backplane
Affiliation:1. Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, UK;2. Department of Materials, University of Oxford, Parks Road, OX1 3PH, UK
Abstract:Optical technologies can support thousands of high bandwidth optical channels to/from a single CMOS integrated circuit, and can thus allow for the construction of novel bandwidth-intensive computing architectures which are no longer constrained by conventional electronic wiring limitations. In this paper, the architecture of a dynamically reconfigurableIntelligent Optical Backplaneis described. The backplane consists of a large number of parallel optical channels (typically 1000–10,000 bits) spaced a few hundred micrometers apart. The optical channels are arranged into upstream and downstream rings, where the channel access protocols are implemented by “smart pixel arrays.” The architecture exploits thebandwith advantageof the optical domain and can be dynamically reconfigured to embed conventional interconnection networks, including multiple busses, rings, and meshes. Unlike all-optical and passive optical systems, the proposed backplane is intelligent and can support communication primitives used in shared memory multiprocessing, including broadcasting, multicasting, acknowledgment, flow and error-control, buffering, shared memory caching, and synchronization. The backplane is also manufacturable using existing optoelectronic technologies. A second generation backplane supporting a distributed shared memory multi-processor is under development.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号