首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于均值更新的分类模型
引用本文:冯进玫,卢志茂,陈纯锴. 一种基于均值更新的分类模型[J]. 计算机系统应用, 2012, 21(8): 123-126,135
作者姓名:冯进玫  卢志茂  陈纯锴
作者单位:1哈尔滨工程大学信息与通信工程学院,哈尔滨1500012黑龙江科技学院电气与信息工程学院,哈尔滨150027
摘    要:最小距离分类法和最近邻分类法是最简单、快速、有效的分类方法,但对噪声较敏感,对于训练样本很少或训练样本偏离类中心较远时,分类效果较差。针对这一问题,提出了基于均值更新(MU)的分类模型,通过不断扩大训练样本并更新均值中心来改善对测试数据的分类效果;并在此基础上提出了基于均值更新的最小距离(MU-MD)分类模型,利用MU的分类结果重新计算各类的均值,然后采用最小距离法对所有测试样本重新进行划分,以确定最终的类别归属,这样可以部分纠正MU分类过程中的错分,进一步提高分类效果。

关 键 词:最小距离分类法  均值更新  训练样本  测试样本
收稿时间:2012-02-16
修稿时间:2012-03-12

Classification Model Based on the Mean Update
FENG Jin-Mei,LU Zhi-Mao and CHEN Chun-Kai. Classification Model Based on the Mean Update[J]. Computer Systems& Applications, 2012, 21(8): 123-126,135
Authors:FENG Jin-Mei  LU Zhi-Mao  CHEN Chun-Kai
Affiliation:1'2 1(College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China) 2(College of Electric and Information Engineering, Heilongjiang Institute of Science and Technology, Harbin 150027, China)
Abstract:The minimum distance classification algorithm and the nearest neighbor classification algorithm are the simplest, most rapid and most effective classification methods, and they are more sensitive to the noise. But to the training samples in few or the training samples that are far fi'om the cluster center, the classification results is poor. To solve this problem, this paper proposes a classification model based on the mean update (MU), by expanding the training sample and updating the mean center to improve the classification results of the test data; and on this basis, it proposes the MU-based minimum distance (MU-MD) classification model, and uses the MU's classification results to recalculate the mean of all test samples, then all test samples are re-divided by using the minimum distance method, so as to determine the final category attribution. This can partially correct misclassification in the MU category process and further improve the classification results.
Keywords:the minimum distance classification algorithm  mean update  training samples  test samples
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号