首页 | 本学科首页   官方微博 | 高级检索  
     

二阶微粒群优化神经网络的混沌系统辨识方法
引用本文:张坤,梁林. 二阶微粒群优化神经网络的混沌系统辨识方法[J]. 计算机系统应用, 2012, 21(5): 201-204
作者姓名:张坤  梁林
作者单位:楚雄师范学院数学系,楚雄675000
基金项目:云南省教育厅科研基金项目(2010Y060)
摘    要:针对BP神经网络在学习算法中的不足,将BP神经网络的权值和阀值训练问题转换为优化问题,提出一种利用二阶微粒群算法优化的神经网络的算法。其次,运用基于二阶微粒群算法训练的神经网络模型对混沌系统进行辨识,并与传统的BP神经网络、RBF网络对同一混沌系统辨识的结果进行比较。实验表明,利用二阶微粒群优化算法训练神经网络进行混沌系统辨识,辨识的效果优于其它几种神经网络模型,可有效用于混沌系统的辨识。

关 键 词:混沌  神经网络  微粒群算法  二阶微粒群算法
收稿时间:2011-09-06
修稿时间:2011-10-09

Chaotic System Identification Based on BP Neural Network of Two Order Particle Swarm Optimization
ZHANG Kun and LIANG Lin. Chaotic System Identification Based on BP Neural Network of Two Order Particle Swarm Optimization[J]. Computer Systems& Applications, 2012, 21(5): 201-204
Authors:ZHANG Kun and LIANG Lin
Affiliation:(Department of Mathematics,Chuxiong Normal University,Chuxiong 675000,China)
Abstract:Aiming to the shortage of BP neural network in training algorithm,the problem of neural network learning can be seen as a function optimization problem and the neural network model based on two order particle swarm optimization is proposed.Then,chaotic system is identified by BP trained with two-order PSO and the efficiency of BP trained with two-order PSO is compared with those of BP and RBF based on the identification of chaotic system.The experimental results show that BP trained with two-order PSO is better than BP and RBF used in chaotic system identification.
Keywords:chaos  neural network  particle swarm optimization  two-order particle swarm optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号