首页 | 本学科首页   官方微博 | 高级检索  
     


Event‐triggered H∞ control for a class of nonlinear networked control systems using novel integral inequalities
Authors:Qing‐Long Han
Affiliation:1. Griffith School of Engineering, Griffith University Gold Coast Campus, Gold Coast, QLD, Australia;2. Swinburne Research, Swinburne University of Technology, Hawthorn, VIC, AustraliaSchool of Software and Electrical Engineering, Swinburne University of Technology, John Street, Hawthorn, Melbourne, VIC 3122, Australia
Abstract:This paper is concerned with event‐triggered H control for a class of nonlinear networked control systems. An event‐triggered transmission scheme is introduced to select ‘necessary’ sampled data packets to be transmitted so that precious communication resources can be saved significantly. Under the event‐triggered transmission scheme, the closed‐loop system is modeled as a system with an interval time‐varying delay. Two novel integral inequalities are established to provide a tight estimation on the derivative of the Lyapunov–Krasovskii functional. As a result, a novel sufficient condition on the existence of desired event‐triggered H controllers is derived in terms of solutions to a set of linear matrix inequalities. No parameters need to be tuned when controllers are designed. The proposed method is then applied to the robust stabilization of a class of nonlinear networked control systems, and some linear matrix inequality‐based conditions are formulated to design both event‐triggered and time‐triggered H controllers. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:event‐triggered transmission scheme  nonlinear networked control system  H∞  state feedback control  integral inequality
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号