首页 | 本学科首页   官方微博 | 高级检索  
     

基于贝叶斯分类器的核电厂事故诊断方法研究
引用本文:齐奔,梁金刚,张立国,童节娟. 基于贝叶斯分类器的核电厂事故诊断方法研究[J]. 原子能科学技术, 2022, 56(3): 512-519. DOI: 10.7538/yzk.2021.youxian.0120
作者姓名:齐奔  梁金刚  张立国  童节娟
作者单位:清华大学 核能与新能源技术研究院,北京100084
摘    要:目前在核电厂事故诊断方面所使用的人工智能技术如神经网络等,难以同时具备较好的鲁棒性和可解释性,本研究提出基于贝叶斯分类器的核电厂事故诊断方法,并进一步将贝叶斯分类器细化为离散型朴素贝叶斯分类器、高斯型朴素贝叶斯分类器和贝叶斯网络3种,将这3种贝叶斯分类器用于核电厂事故诊断,并进行性能对比。研究结果表明:基于贝叶斯分类器的诊断方法将知识驱动和数据驱动相结合,具有较强的鲁棒性和可解释性。3种分类器中,高斯型朴素贝叶斯方法诊断在诊断准确率、诊断效率、事故破口尺寸诊断精度和事故可诊断的种类方面具有显著优势。

关 键 词:人工智能   贝叶斯分类器   事故诊断   数据驱动   知识驱动

Research on Accident Diagnosis Method for Nuclear Power Plant Based on Bayesian Classifier
QI Ben,LIANG Jingang,ZHANG Liguo,TONG Jiejuan. Research on Accident Diagnosis Method for Nuclear Power Plant Based on Bayesian Classifier[J]. Atomic Energy Science and Technology, 2022, 56(3): 512-519. DOI: 10.7538/yzk.2021.youxian.0120
Authors:QI Ben  LIANG Jingang  ZHANG Liguo  TONG Jiejuan
Affiliation:Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Abstract:The artificial intelligence technologies currently used in nuclear power plant accident diagnosis, such as neural networks, are difficult to have both robustness and interpretability. The nuclear power plant accident diagnosis method based on Bayesian classifier was proposed in the paper, and the Bayesian classifiers were further refined into discrete naive Bayes classifiers, Gaussian naive Bayes classifiers and Bayesian networks. The performances of three Bayesian classifiers used in nuclear power plants accident diagnosis were compared. The analysis results show that the diagnosis method based on Bayesian classifier which combines knowledge driven and data driven has strong robustness and interpretability. Among the three classifiers, the Gaussian naive Bayesian method diagnosis has significant advantages in diagnosis accuracy, diagnosis efficiency, diagnosis accuracy of the size of the accident break, and types of accidents that can be diagnosed.
Keywords:artificial intelligence   Bayesian classifier   accident diagnosis   data-driven   knowledge-driven
点击此处可从《原子能科学技术》浏览原始摘要信息
点击此处可从《原子能科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号