首页 | 本学科首页   官方微博 | 高级检索  
     


A line-balancing strategy for designing flexible assembly systems
Authors:Heungsoon Felix Lee and Roger Vivian Johnson
Affiliation:(1) Department of Industrial Engineering, Southern Illinois University, 62026 Edwardsville, IL;(2) School of Business Administration, The University of Michigan, 48109 Ann Arbor, MI
Abstract:We present a rough-cut analysis tool that quickly determines a few potential cost-effective designs at the initial design stage of flexible assembly systems (FASs) prior to a detailed analysis such as simulation. It uses quantitative methods for selecting and configuring the components of an FAS suitable for medium to high volumes of several similar products. The system is organized as a series of assembly stations linked with an automated material-handling system moving parts in a unidirectional flow. Each station consists of a single machine or of identical parallel machines. The methods exploit the ability of flexible hardware to switch almost instantaneously from product to product. Our approach is particularly suitable where the product mix is expected to be stable, since we combine the hardware-configuration phase with the task-allocation phase.For the required volume of products, we use integer programming to select the number of stations and the number of machines at each station and to allocate tasks to stations. We use queueing network analysis, which takes into account the mean and variance of processing times among different products to determine the necessary capacity of the material-handling system. We iterate between the two analyses to find the combined solution with the lowest costs. Work-in-process costs are also included in the analysis. Computational results are presented.
Keywords:assembly-line balancing  closed queueing networks  flexible assembly systems  integer programming  minimum cost design
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号