首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Combined Addition of Cu and Aluminum Oxide Nanoparticles on Mechanical Properties and Microstructure of Al-7Si-0.3Mg Alloy
Authors:Hongseok Choi  Milton Jones  Hiromi Konishi and Xiaochun Li
Affiliation:(1) Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA;(2) Materials Science Program, University of Wisconsin-Madison, Madison, USA;(3) Present address: Brady Corporation, Milwaukee, WI 53201-0571, USA;
Abstract:In this study, an ultrasonic cavitation based dispersion technique was used to fabricate Al-7Si-0.3Mg alloyed with Cu and reinforced with 1 wt pct Al2O3 nanoparticles, in order to investigate their influence on the mechanical properties and microstructures of Al-7Si-0.3Mg alloy. The combined addition of 0.5 pct Cu with 1 pct Al2O3 nanoparticles increased the yield strength, tensile strength, and ductility of the as-cast Al-7Si-0.3Mg alloy, mostly due to grain refinement and modification of the eutectic Si and θ-CuAl2 phases. Moreover, Al-7Si-0.3Mg-0.5Cu-1 pct Al2O3 nanocomposites after T6 heat treatment showed a significant enhancement of ductility (increased by 512 pct) and tensile strength (by 22 pct). The significant enhancement of properties is attributed to the suppression of pore formation and modification of eutectic Si phases due to the addition of Al2O3 nanoparticles. However, the yield strength of the T6 heat-treated nanocomposites was limited in enhancement due to a reaction between Mg and Al2O3 nanoparticles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号