首页 | 本学科首页   官方微博 | 高级检索  
     


Formulation and application of weight-function-based physical programming
Authors:Yifeng Yuan  Chong Gao  Jianfu Cao
Affiliation:School of Information Science and Engineering, East China University of Science and Technology (ECUST), Shanghai, PR China
Abstract:Physical programming is effective in multi-objective optimization since it assists the designer to find the most preferred solution. Preference-function-based physical programming (PFPP) abandons the weighted-sum approach and its performance in generating Pareto solutions is susceptible to the transformation of pseudo-preferences. With the aim of integrating a weighted-sum approach into physical programming and generating well-distributed Pareto solutions, a weight-function-based physical programming (WFPP) method has been proposed. The approach forms a weight function for each normalized criterion and uses the variable weighted sum of all criteria as the aggregate objective function. Implementation for numerical and engineering design problems indicates that WFPP works as well as PFPP. The design process of generating Pareto solutions by WFPP is further presented, where the pseudo-preferences are allowed to transform in different ranges. Examples and results demonstrate that solutions generated by WFPP have better diversity performance than those of PFPP, especially when the pseudo-preferences are far from the true Pareto front.
Keywords:physical programming  preference  weight function  multi-objective optimization  Pareto solutions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号