首页 | 本学科首页   官方微博 | 高级检索  
     


Shifts in the Gas-Particle Partitioning of Ambient Organics with Transport into the Indoor Environment
Authors:Natasha Hodas  Barbara J Turpin
Affiliation:1. Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey , USA;2. Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey , USA;3. Environmental and Occupational Health Sciences Institute , Piscataway , New Jersey , USA
Abstract:Predicting indoor exposures to ambient organic aerosol (OA) is complicated by shifts in the gas-particle partitioning of ambient organics with outdoor-to-indoor transport. This analysis aims to quantify the effect of changes in temperature and OA loading on the gas-particle partitioning of ambient organics transported indoors and explores whether accounting for shifts in partitioning closes the gap between measured indoor ambient OA concentrations and indoor concentrations calculated in a previous analysis using a model that accounts for only physical losses. Changes in the gas-particle partitioning of ambient organics with outdoor-to-indoor transport were calculated for 167 homes using measured temperatures and OA concentrations and published OA volatility distributions. Initially, it was assumed that ambient OA could be represented with a single volatility distribution. We then repeated the analysis treating ambient OA as the sum of distinct components, each with a distinct volatility distribution, derived from factor analysis of aerosol mass spectra (e.g., hydrocarbon-like OA HOA], oxygenated OA OOA]). We also evaluated the sensitivity of our calculations to uncertainty in the thermodynamic properties of ambient OA by varying the enthalpy of vaporization. Partitioning shifts were sensitive to enthalpy-of-vaporization assumptions and resulted in changes in indoor ambient OA concentrations of 13–27%. Our calculations indicate that phase changes are important determinants of residential exposure to ambient OA and are of sufficient magnitude to close the gap between measured and modeled indoor concentrations of ambient OA.

Copyright 2014 American Association for Aerosol Research

Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号