首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a Technology for Online Measurement of Total and Water-Soluble Copper (Cu) in PM2.5
Authors:Dongbin Wang  Martin M. Shafer  James J. Schauer
Affiliation:1. Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, USA;2. Environmental Chemistry and Technology Program, University of Wisconsin—Madison, Madison, Wisconsin, USA;3. Wisconsin State Laboratory of Hygiene, University of Wisconsin—Madison, Madison, Wisconsin, USA
Abstract:A novel monitor for online, in situ measurement of copper (Cu) in ambient fine and ultrafine particulate matter (PM) was developed based on a recent published high flow rate aerosol-into-liquid collector. This aerosol-into-liquid collector operates at 200 L/min flow and collects particles directly as highly concentrated slurry samples. The Cu concentration in slurry samples is subsequently determined by a cupric ion selective electrode (ISE). Laboratory tests were conducted to evaluate the performance of the cupric ISE. The calibration curve of the cupric ISE was determined using Cu(NO3)2 standard solutions prepared by serial dilution. As part of the evaluation, the effects of ionic strength, temperature and pH of the aerosol slurry sample on the cupric ISE measurement were also evaluated. The Cu measurement system performance was evaluated by collecting and measuring samples of lab-generated Cu(NO3)2 aerosols with known mass concentration. Overall, very good agreement between the theoretical and measured Cu concentrations was obtained, corroborating the excellent high overall collection efficiency and measurement accuracy of the Cu measurement system. Field evaluations of the online Cu monitor demonstrated very good agreement for total and water-soluble Cu concentrations with measurements performed by inductively coupled plasma mass spectrometry (ICP-MS), suggesting that interferences from other components of particulate matter are minimal under real world sampling conditions. Moreover, the field tests indicated that the new online Cu monitor could achieve near-continuous collection and measurements (at 2–4 h intervals) for at least 4 to 7 days without any obvious shortcomings in its operation. Both laboratory and field evaluations of the online Cu monitor indicate that it is an effective and valuable technology for PM collection and characterization of Cu in ambient aerosols and provides the foundation for the wider use of ISE for metal analysis and speciation of aerosols.

Copyright 2014 American Association for Aerosol Research

Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号