首页 | 本学科首页   官方微博 | 高级检索  
     


Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial
Authors:Erlin Zhang  Haiyan Chen  Feng Shen
Affiliation:(1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China;(2) Graduate University of Chinese Academy of Sciences, Beijing, 100049, China;(3) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
Abstract:Biocorrosion properties and blood- and cell compatibility of pure iron were studied in comparison with 316L stainless steel and Mg–Mn–Zn magnesium alloy to reveal the possibility of pure iron as a biodegradable biomaterial. Both electrochemical and weight loss tests showed that pure iron showed a relatively high corrosion rate at the first several days and then decreased to a low level during the following immersion due to the formation of phosphates on the surface. However, the corrosion of pure iron did not cause significant increase in pH value to the solution. In comparison with 316L and Mg–Mn–Zn alloy, the pure iron exhibited biodegradable property in a moderate corrosion rate. Pure iron possessed similar dynamic blood clotting time, prothrombin time and plasma recalcification time to 316L and Mg–Mn–Zn alloy, but a lower hemolysis ratio and a significant lower number density of adhered platelets. MTT results revealed that the extract except the one with 25% 24 h extract actually displayed toxicity to cells and the toxicity increased with the increasing of the iron ion concentration and the incubation time. It was thought there should be an iron ion concentration threshold in the effect of iron ion on the cell toxicity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号