首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of interface on mid-infrared photothermal response of MoS2 thin film grown by pulsed laser deposition
Authors:Goswami  Ankur  Dhandaria  Priyesh  Pal  Soupitak  McGee  Ryan  Khan  Faheem  Antić   Željka  Gaikwad   Ravi  Prashanthi   Kovur  Thundat   Thomas
Affiliation:1. Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada;2. Department of Chemical Engineering, University of California, Santa Barbara 93106-5070, USA
Abstract:This study reports on the mid-infrared (mid-IR) photothermal response of multilayer MoS2 thin films grown on crystalline (p-type silicon and c-axisoriented single crystal sapphire) and amorphous (Si/SiO2 and Si/SiN) substrates by pulsed laser deposition (PLD).The photothermal response of the MoS2 films is measured as the changes in the resistance of the MoS2 films when irradiated with a mid-IR (7 to 8.2 μm) source.We show that enhancing the temperature coefficient of resistance (TCR) of the MoS2 thin films is possible by controlling the film-substrate interface through a proper choice of substrate and growth conditions.The thin films grown by PLD are characterized using X-ray diffraction,Raman,atomic force microscopy,X-ray photoelectron microscopy,and transmission electron microscopy.The high-resolution transmission electron microscopy (HRTEM) images show that the MoS2 films grow on sapphire substrates in a layer-by-layer manner with misfit dislocations.The layer growth morphology is disrupted when the films are grown on substrates with a diamond cubic structure (e.g.,silicon) because of twin growth formation.The growth morphology on amorphous substrates,such as Si/SiO2 or Si/SiN,is very different.The PLD-grown MoS2 films on silicon show higher TCR (-2.9% K-1 at 296 K),higher mid-IR sensitivity (△R/R =5.2%),and higher responsivity (8.7 V·W-1) compared to both the PLD-grown films on other substrates and the mechanically exfoliated MoS2 flakes transferred to different substrates.
Keywords:MoS2  pulsed laser deposition  photothermal effect  infrared (IR) detector  interface
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号