首页 | 本学科首页   官方微博 | 高级检索  
     


Coralyne binds tightly to both T.A.T- and C.G.C(+)-containing DNA triplexes
Authors:JS Lee  LJ Latimer  KJ Hampel
Affiliation:Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada.
Abstract:Coralyne is a DNA-binding antitumor antibiotic whose structure contains four fused aromatic rings. The interaction of coralyne with the DNA triplexes poly(dT).poly(dA).poly(dT) and polyd(TC)].polyd(GA)].polyd(C+T)] was investigated by using three techniques. First, Tm values were measured by thermal denaturation analysis. Upon binding coralyne, both triplexes showed Tm values that were increased more than those of the corresponding duplexes. A related drug, berberinium, in which one of the aromatic rings is partially saturated, gave much smaller changes in Tm. Second, the fluorescence of coralyne is quenched in the presence of DNA, allowing the measurement of binding parameters by Scatchard analysis. The binding isotherms were biphasic, which was interpreted in terms of strong intercalative binding and much weaker stacking interactions. In the presence of 2 mM Mg2+, the binding constants to poly(dT).poly-(dA).poly(dT) and polyd(TC)].polyd(GA)].poly(C+T)] were 3.5 x 10(6) M-1 and 1.5 x 10(6) M-1, respectively, while the affinity to the parent duplexes was at least 2 orders of magnitude lower. In the absence of 2 mM Mg2+, the binding constants to polyd(TC)].polyd(GA)].polyd(C+T)] and poly-d(TC)].polyd(GA)] were 40 x 10(6) M-1 and 15 x 10(6) M-1, respectively. Thus coralyne shows considerable preference for the triplex structure but little sequence specificity, unlike ethidium, which will only bind to poly(dT).poly(dA).poly(dT). Further evidence for intercalation of coralyne was provided by an increase in the relative fluorescence quantum yield at 260 nm upon binding of coralyne to triplexes as well as an absence of quenching of fluorescence in the presence of Fe(CN)6]4-.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号