首页 | 本学科首页   官方微博 | 高级检索  
     

表面形貌对砂轮磨削流体压力与润滑的影响
引用本文:王立梅,王优强,张同钢,徐彩红.表面形貌对砂轮磨削流体压力与润滑的影响[J].表面技术,2017,46(9):245-251.
作者姓名:王立梅  王优强  张同钢  徐彩红
作者单位:青岛理工大学 机械工程学院,山东 青岛,266520;青岛理工大学 机械工程学院,山东 青岛,266520;青岛理工大学 机械工程学院,山东 青岛,266520;青岛理工大学 机械工程学院,山东 青岛,266520
基金项目:国家自然科学基金资助项目(51575289);山东省自然科学基金培养基金项目(2016ZRB01AJX)
摘    要:目的从磨削液压力及润滑方面找到减少磨粒磨损、磨削热和降低工件表面粗糙度的方法。方法基于实际情况,将砂轮突出的磨粒分布函数和工件在磨削之前存在的粗糙度函数等效为余弦函数,对陶瓷结合剂CBN砂轮磨削45号钢而产生的流体压力和膜厚进行了分析。结果考虑砂轮和工件的表面粗糙度时,压力波动集中在中心区域,磨削区最大压力和最大膜厚明显增大。在考虑热效应的情况下,当两表面波长相等、幅值同时增大时,最大膜厚及平均膜厚增大,而幅值相等、波长增大时,润滑情况没有改善;当砂轮表面幅值波长相等且变大时,最大膜厚及平均膜厚增大,由此也可以得出当砂轮表面幅值波长不变,工件表面如此变化时结果相同;当两表面幅值和波长不相等且都成倍增大时,最大膜厚及平均膜厚增大。结论膜厚增大利于润滑时,能降低磨削温度,减少磨削烧伤和热变形,降低工件磨削后的表面粗糙度,减少非工作磨粒的磨损,减少砂轮修正次数,延长砂轮寿命。但是膜厚不会无限增大,因为磨削区域并不封闭,在实际工程中可依据此理论来确定最优解,优化磨削过程。

关 键 词:多重网格法  砂轮磨削  流体压力  润滑  表面粗糙度
收稿时间:2017/3/20 0:00:00
修稿时间:2017/9/20 0:00:00

Effect of Surface Morphology on Pressure and Lubrication of Grinding Wheel
WANG Li-mei,WANG You-qiang,ZHANG Tong-gang and XU Cai-hong.Effect of Surface Morphology on Pressure and Lubrication of Grinding Wheel[J].Surface Technology,2017,46(9):245-251.
Authors:WANG Li-mei  WANG You-qiang  ZHANG Tong-gang and XU Cai-hong
Affiliation:School of Mechanical Engineering, Qingdao Technological University, Qingdao 266520, China,School of Mechanical Engineering, Qingdao Technological University, Qingdao 266520, China,School of Mechanical Engineering, Qingdao Technological University, Qingdao 266520, China and School of Mechanical Engineering, Qingdao Technological University, Qingdao 266520, China
Abstract:The work aims to study find ways to reduce abrasive wear, grinding heat and lower the surface roughness of the workpiece from grinding fluid pressure and lubrication. This article based on the actual situation,The abrasive particle distribution function and the roughness function of the workpiece before grinding are equivalent to the cosine function, When the ceramic bonded CBN grinding wheel grinding No. 45 steel,the fluid pressure and film thickness are analyzed . The results show that considering the surface roughness of the grinding wheel and the workpiece, the pressure fluctuation is concentrated in the central area, the maximum pressure and the maximum thickness of the grinding area obviously increased. In the case of thermal effects: When the wavelength of two surfaces are equal and the amplitude of two surfaces increases simultaneously, the maximum film thickness and average film thickness increases. When the amplitude of two surfaces are equal and the wavelength of two surfaces increases simultaneously, the lubrication does not improve. When he amplitude of the grinding wheel surface is equal to the wavelength and increase simultaneously, the maximum film thickness and average film thickness increases, which can also be obtained when the wheel surface amplitude and wavelength constant, the workpiece surface change the same situation; when the two surface amplitude and wavelength are not equal and multiplied , the maximum film thickness and average film thickness increases to, the above three conditions, the increased film thickness which conducive to lubrication can lower the grinding temperature, reduce grinding burns ,thermal deformation and the workpiece roughness after grinding. It also can reduce the wear of non-working abrasive grains and the number of grinding wheel correction to extend the wheel life. But the film thickness will not increase indefinitely, because the grinding area is not closed, but the optimal solution can be based on this theory in the actual project to optimize the grinding process.
Keywords:multigrid method  grinding wheel  workpiece fluid pressure  lubrication  surface roughness
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号