首页 | 本学科首页   官方微博 | 高级检索  
     

镜像图与粗细层次结合的稀疏人脸识别方法研究
引用本文:石兰芳,许瑞,周先春. 镜像图与粗细层次结合的稀疏人脸识别方法研究[J]. 电视技术, 2018, 0(2): 110-114. DOI: 10.16280/j.videoe.2018.02.019
作者姓名:石兰芳  许瑞  周先春
作者单位:1. 南京信息工程大学 江苏省气象探测与信息处理重点实验室,江苏 南京210044;2. 儿童发展与学习科学教育部重点实验室,江苏 南京210096;3. 南京信息工程大学 电子与信息工程学院,江苏 南京210044;4. 南京信息工程大学 数学与统计学院,江苏 南京,210044
基金项目:国家自然科学基金项目(11202106),东南大学基本科研业务费资助项目(CDLS-2016-03)
摘    要:人脸在实际环境中,伴随着各种不可预知的情况,会呈现出复杂多变的特性.为了提高人脸识别率及更好的显示人脸特征,本文提出一种镜像图与粗细层次结合的稀疏识别新方法.该方法首先利用人脸的镜面性生成新的人脸图像,将原来的人脸训练样本和新生成的镜像图样本结合起来,使用粗细层次结合的分类方法来进行识别.新方法一方面增加了训练样本的数目,克服由于光照和姿态等外部因素带来的影响,另一方面选取合适的训练样本,丢掉不合适样本对于人脸识别所造成的不利影响.实验结果表明,新方法在人脸识别率上有了明显的提高.

关 键 词:人脸识别  镜面性  粗细层次结合  稀疏分类  Face recognition  Mirror image  Coarse-to-fine  Sparse representation

Study on sparse face recognition method based on the combination of coarse-to-fine and mirror image
SHI Lanfang,XU Rui,ZHOU Xianchun. Study on sparse face recognition method based on the combination of coarse-to-fine and mirror image[J]. Ideo Engineering, 2018, 0(2): 110-114. DOI: 10.16280/j.videoe.2018.02.019
Authors:SHI Lanfang  XU Rui  ZHOU Xianchun
Abstract:Along with a variety of unpredictable conditions,face in the actual environment will show a complex and changeable characteristics.In order to improve the accuracy of face recognition and better display facial feature,we propose s a new method which based on the combination of mirror image and coarse-to-fine face recognition.The method firstly used the mirror image of the face image to generate new samples,and then devised representation which based method simultaneously uses the original and new training samples to perform a sparse coarse-to-fine representation.The new method increases the number of training sam-ples,overcomes the problem of the variation of the pose and illumination of the original face image,it also uses a small number of classes what are near to the test sample to represent and classify it,and"far"from inappropriate samples that caused adverse effects in face recognition.Experimental results show that the new method has been significant improvement in the accuracy of recognition rate.
Keywords:
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号