首页 | 本学科首页   官方微博 | 高级检索  
     

基于RSS手指模的煤矿井下WLAN定位方法
引用本文:郝丽娜,张秀均,郁万里,乔莹. 基于RSS手指模的煤矿井下WLAN定位方法[J]. 传感器与微系统, 2012, 31(9): 46-49
作者姓名:郝丽娜  张秀均  郁万里  乔莹
作者单位:中国矿业大学物联网(感知矿山)研究中心信息与电气工程学院,江苏徐州,221008
基金项目:国家自然科学基金资助项目(60972059)
摘    要:到达信号强度(RSS)手指模定位技术已广泛应用于室内定位技术,提出了适用于煤矿井下由于电磁波多径效应而变得复杂的环境的RSS手指模定位算法。通过对煤矿井下电磁环境信息的采集,对采集到的信息进行处理,使用贝叶斯公式法估计出概率较大的3个位置,然后再使用最邻近法的欧几里德距离估计出位置。通过对实验数据的统计分析,仿真结果表明:提出的基于RSS手指模改进的融合算法的节点定位精度要比K邻近法的定位精度要高,定位性能要优越。

关 键 词:无线保真  到达信号强度  定位  手指模

Underground coal mine WLAN localization algorithm based on RSS fingerprinting
HAO Li-na , ZHANG Xiu-jun , YU Wan-li , QIAO Ying. Underground coal mine WLAN localization algorithm based on RSS fingerprinting[J]. Transducer and Microsystem Technology, 2012, 31(9): 46-49
Authors:HAO Li-na    ZHANG Xiu-jun    YU Wan-li    QIAO Ying
Affiliation:(IoT Perception Mine Research Center,School of Information and Electrical Engineering, China University of Mining and Technology,Xuzhou 221008,China)
Abstract:Received signal strength(RSS) fingerprinting is widely used in the indoor localization technology.The RSS finger mode localization algorithm is put forward to use in the complex underground mine environment. Through the information of electromagnetic environment,the collected information is processed,the larger three probability position is estimated using Bayesian formula method,and the location is estimated using Euclidean distance of the nearest formula.By the statistical analysis on experiment data,the simulation results show that the localization precision of the advanced algorithm based on RSS fingerprinting is better than the K nearest algorithm, and its performance is superior.
Keywords:WiFi  received signal strength(RSS)  localization  fingerprinting
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号